
C Structures

Structure is a user-defined datatype in C
language which allows us to combine data of different
types together. Structure helps to construct a complex
data type which is more meaningful. It is somewhat
similar to an Array, but an array holds data of similar
type only. But structure on the other hand, can store
data of any type, which is practical more useful.

For example: If I have to write a program to store Stu‐
dent information, which will have Student's name, age,
branch, permanent address, father's name etc, which
included string values, integer values etc, how can I
use arrays for this problem, I will require something
which can hold data of different types together.

In structure, data is stored in form of records.

Defining a structure

struct keyword is used to define a
structure. struct defines a new data type which is a
collection of primary and derived data types.

Syntax:

struct [structure_tag] 
{
 //member variable 1 
//member variable 2 



//member variable 2 
//member variable 3 ... 
}
[structure_variables];

As you can see in the syntax above, we start with
the struct keyword, then it's optional to provide
your structure a name, we suggest you to give it
a name, then inside the curly braces, we have to
mention all the member variables, which are nothing
but normal C language variables of different types
like int, float, array etc.
After the closing curly brace, we can specify one or
more structure variables, again this is optional.

Note: The closing curly brace in the structure type
declaration must be followed by a semicolon(;).

Example of Structure

struct Student
 { 
char name[25]; 
int age; 
char branch[10]; 
// F for female and M for male 
char gender; 
};

Here struct Student declares a structure to hold the
details of a student which consists of 4 data fields,



details of a student which consists of 4 data fields,
namely name, age, branch and gender. These fields are
called structure elements or members.

Each member can have different datatype, like in
this case, name is an array of char type and age is
of int type etc. Student is the name of the structure
and is called as the structure tag.

Declaring Structure Variables

It is possible to declare variables of a structure, either
along with structure definition or after the structure
is defined. Structure variable declaration is similar to
the declaration of any normal variable of any other
datatype. Structure variables can be declared in
following two ways:

1) Declaring Structure variables separately
struct Student 
{ char name[25]; 
int age; 
char branch[10];
 //F for female and M for male 
char gender; }; 
struct Student S1, S2;
 //declaring variables of struct Student

2) Declaring Structure variables with structure
definition



struct Student 
{ 
char name[25]; 
int age; char branch[10]; 
//F for female and M for male 
char gender;
 }
S1, S2;
Here S1 and S2 are variables of structure Student.
However this approach is not much recommended.

Accessing Structure Members
Structure members can be accessed and assigned
values in a number of ways. Structure members have
no meaning individually without the structure. In order
to assign a value to any structure member, the mem‐
ber name must be linked with the structure variable
using a dot . operator also called period or member
access operator.

For example
#include<stdio.h> 
#include<string.h> 
struct Student 
{ 
char name[25]; 
int age; 
char branch[10]; 
//F for female and M for male 
char gender; 



char gender; 
}; 
int main() 
{ 
struct Student s1; 
/* s1 is a variable of Student type and age is a member
of Student */ 
s1.age = 18; 
/* using string function to add name */ 
strcpy(s1.name, "Viraaj");
/* displaying the stored values */ 
printf("Name of Student 1: %s\n", s1.name);
printf("Age of Student 1: %d\n", s1.age); 
return 0;
 }

We can also use scanf() to give values to structure
members through terminal.
scanf(" %s ", s1.name); 
scanf(" %d ", &s1.age);

Structure Initialization

Like a variable of any other datatype, structure variable
can also be initialized at compile time.

struct Patient { float height; int weight; int age; }; struct
Patient p1 = { 180.75 , 73, 23 }; 
//initialization

or,



or,

struct Patient p1; 
p1.height = 180.75; 
//initialization of each member separately p1.weight =
73; 
p1.age = 23;



 



Last modified: 2:59 pm


