Paper: C 2.1 (Real Analysis)

Unit I

Finite and Infinite Sets:

\checkmark The empty set ϕ is said to have 0 elements.
\checkmark If $n \in \mathrm{~N}$ (set of natural numbers), a set S is said to have n elements if there exists a bijection from the set $\mathrm{N}_{\mathrm{n}}=\{1,2, \ldots, \mathrm{n}\}$ onto S.
\checkmark A set S is said to be finite if it is either empty or it has n elements for some $n \in \mathrm{~N}$.
\checkmark A set S is said to be infinite if it is not finite.
Uniqueness Theorem: If S is a finite set, then the number of elements in S is a unique number in N .

Theorem: The set N of natural numbers is an infinite set.
Proof: Let us assume that N is a finite set.
$\Rightarrow \exists$ a bijection $f: \mathrm{N}_{n} \rightarrow \mathrm{~N}$ for some $n \in \mathrm{~N} \quad$ (Here we have used definition of finite set)
$\Rightarrow g \equiv f^{-1}: \mathrm{N} \rightarrow \mathrm{N}_{n}$ is also a bijection
In particular we consider, $h: \mathrm{N}_{n+1} \rightarrow \mathrm{~N}_{n}$ defined as $h(x)=g(x) \quad \forall x \in \mathrm{~N}_{n+1}$
Now we wish to prove h is a one-one function.
Let x_{1} and x_{2} be any elements of N_{n+1} such that

$$
\begin{aligned}
& h\left(x_{1}\right)=h\left(x_{2}\right) \\
\Rightarrow & g\left(x_{1}\right)=g\left(x_{2}\right) \\
\Rightarrow & x_{1}=x_{2}(\because g \text { is } 1-1) \\
\Rightarrow & h \text { is } 1-1
\end{aligned}
$$

which contradicts the Pigeonhole principle.
Thus our assumption is wrong i.e., the set N of natural numbers is an infinite set.
Hence proved.
Theorem: If A is a set with m elements and B is a set with n elements and if $A \cap B=\phi$, then $A \cup B$ has $m+n$ elements.

Proof:

Given that,
A is a set with m elements
$\Rightarrow \exists$ a bijection $f: \mathrm{N}_{m} \rightarrow A$
(Here we have used definition of finite set)
And
B is a set with n elements
$\Rightarrow \exists$ a bijection $g: N_{n} \rightarrow B$
To show there exists a bijection $h: \mathrm{N}_{m+n} \rightarrow A \cup B$.
We define h as

$$
h(i)=\left\{\begin{array}{l}
f(i), \quad i=1,2, \ldots, m \\
g(i-m), \quad i=m+1, m+2, \ldots, m+n
\end{array}\right.
$$

Claim: h is $1-1$
For $i \neq j$ we wish to show $h(i) \neq h(j)$.
Case 1: If $i, j \leq m$ then $h(i)=f(i), h(j)=f(j)$.
Since f is $1-1 \Rightarrow f(i) \neq f(j) \Rightarrow h(i) \neq h(j)$
Case 2: If $i, j>m$ then $h(i)=g(i-m), h(j)=g(j-m)$.
Since g is $1-1 \Rightarrow g(i-m) \neq g(j-m) \Rightarrow h(i) \neq h(j)$
Case 3: If $i \leq m, j>m$ then $h(i)=f(i), h(j)=g(j-m)$.
Since $f(i) \in A, g(j-m) \in B$ and $A \cap B=\phi$
$\Rightarrow f(i) \neq g(j-m) \Rightarrow h(i) \neq h(j)$
Combining (iii), (iv), (v) we get h is $1-1$ or injection.
Claim: h is onto
Let $x \in A \cup B \Rightarrow x \in A$ or $x \in B$.
If $x \in A \Rightarrow x=f(k)$ for some $k \in \mathrm{~N}_{m}$

$$
\Rightarrow x=h(k)
$$

If $x \in B \Rightarrow x=g(k)$ for some $k \in \mathrm{~N}_{n}$

$$
\Rightarrow x=h(m+k)
$$

Thus h is onto or surjection.
Since h is $1-1$ and onto $\Rightarrow h$ is a bijection.

Hence $A \cup B$ has $m+n$ elements.
Proved.

Theorem: If A is a set with $m \in \mathrm{~N}$ elements and $C \subseteq A$ is a set with 1 element, then $\mathrm{A} \backslash \mathrm{C}$ is a set with $\mathrm{m}-1$ elements.

Proof: Home Work
Theorem: If C is an infinite set and B is a finite set, then $C \backslash B$ is an infinite set.
Proof: Home Work

Theorem: Suppose that S and T are sets and $T \subseteq S$.
(a) If S is a finite set, then T is a finite set.
(b) If T is an infinite set, then S is an infinite set.

Proof:

(a) Given that S is a finite set.

Suppose, $T=\phi$.
We know that empty set is finite.
$\Rightarrow T$ is a finite set.
Suppose that $T \neq \phi$.
We have to prove this theorem using principle of mathematical induction.
Let S has 1 element, then the only nonempty subset T of S must coincide with S, so T is a finite set.

Let us assume that every nonempty subset of a set with k elements is finite, i.e., if S has k elements and T is a nonempty subset of S then T is a finite set.

Now let S be a set having $k+1$ elements (so there exists a bijection f of $\mathrm{N}_{\mathrm{k}+1}$ onto S), and let $T \subseteq S$.

If $f(k+1) \notin T$, we can consider T to be a subset of $S_{1}=S \backslash\{f(k+1)\}$.
We know that If A is a set with $m \in \mathrm{~N}$ elements and $C \subseteq A$ is a set with 1 element, then $A \backslash C$ is a set with $m-1$ elements.

In view of the above statement we have S_{1} has k elements.
Hence, by the induction hypothesis, T is a finite set.
On the other hand, if $f(k+1) \in T$, then $T_{1}=T \backslash\{f(k+1)\}$ is a subset of S_{l}. Since S_{1} has k elements, the induction hypothesis implies that T_{1} is a finite set. But this implies that $T=T_{1} \cup\{f(k+1)\}$ is also a finite set.
(b) We know that, by contrapositive implication, the implication $P \Rightarrow Q$ is logically equivalent to the implication $(\operatorname{not} Q) \Rightarrow($ not $P)$.
In view of the above statement we have that if T is an infinite set, then S is an infinite set. Hence proved.

References:

(i) Bartle, R.G. and Sherbert, D. R.(2002). Introduction to Real Analysis, 3rd Ed., John Wiley and Sons (Asia) Pvt. Ltd., Singapore.
(ii) Malik, S. C. and Arora, S. (2008). Mathematical Analysis, 3rd revised edition, New age International (P) Ltd. New Delhi.

