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Paper: C 2.1 (Real Analysis) 

Unit I 

Finite and Infinite Sets:  

 The empty set   is said to have 0 elements. 
 If  nN  (set of natural numbers), a set S is said to have n elements if there exists 

a bijection from the set Nn = {l, 2, . . . , n} onto S. 
 A set S is said to be finite if it is either empty or it has n elements for some nN . 
 A set S is said to be infinite if it is not finite.  

Uniqueness Theorem:  If S is a finite set, then the number of elements in S is a unique 
number in N. 

Theorem:  The set N of natural numbers is an infinite set.  

Proof: Let us assume that N is a finite set. 

  a bijection : nf N N  for some nN    (Here we have used definition of finite set)  

1 : ng f   N N  is also a bijection 

In particular we consider,  1: n nh  N N  defined as 1( ) ( ) nh x g x x   N  

Now we wish to prove h is a one-one function. 

Let 1x and 2x be any elements of 1nN  such that 
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1 2

1 2

( ) ( )
( ) ( )

( 1 1)
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g x g x
x x g is
h is


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
 

which contradicts the Pigeonhole principle. 

Thus our assumption is wrong i.e., the set N of natural numbers is an infinite set. 

Hence proved. 

Theorem:  If A is a set with m elements and B is a set with n elements and if A B   , then 
A B has m+n elements. 
Proof: 
Given that, 

 A is a set with m elements 

  a bijection : mf AN        ...(i)   
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(Here we have used definition of finite set) 

And  

B is a set with n elements 

  a bijection : ng BN        ...(ii)   

To show there exists a bijection : m nh A B  N . 

We define h as  

( ), 1,2, ,
( )

( ), 1, 2, ,
f i i m

h i
g i m i m m m n


      




 

Claim: h is 1 – 1  

For i j  we wish to show ( ) ( )h i h j . 

Case 1: If  ,i j m   then  ( ) ( ), ( ) ( )h i f i h j f j   . 

Since f is 1 – 1 ( ) ( ) ( ) ( )f i f j h i h j               ... (iii) 

Case 2: If  ,i j m   then  ( ) ( ), ( ) ( )h i g i m h j g j m     . 

Since g is 1 – 1 ( ) ( ) ( ) ( )g i m g j m h i h j                ... (iv) 

Case 3: If  ,i m j m    then  ( ) ( ), ( ) ( )h i f i h j g j m    . 

Since  ( ) , ( )f i A g j m B and A B       

( ) ( ) ( ) ( )f i g j m h i h j                  ... (v) 

Combining (iii), (iv), (v) we get h is 1 – 1 or injection. 

Claim: h is onto 

Let x A B x A or x B     . 

If ( )x A x f k    for some mkN   

 ( )x h k   

If ( )x B x g k    for some nkN   

 ( )x h m k    

Thus h is onto or surjection. 

Since h is 1 – 1 and onto    h is a bijection. 



Page 3 of 4 
 

Hence A B has m+n elements. 

Proved. 

 

Theorem: If A is a set with mN  elements and C A  is a set with 1 element, then A \C is a 
set with m – 1 elements.  

Proof: Home Work 

Theorem: If C is an infinite set and B is a finite set, then C\B is an infinite set. 

Proof:  Home Work 

 

Theorem: Suppose that S and T are sets and T S . 

(a) If S is a finite set, then T is a finite set. 
(b) If T is an infinite set, then S is an infinite set. 

Proof:  

(a) Given that S is a finite set. 

Suppose, T  .  

We know that empty set is finite.  
   T is a finite set. 

Suppose that T  . 

We have to prove this theorem using principle of mathematical induction. 
Let S has 1 element, then the only nonempty subset T of S must coincide with S, so T is a 

finite set.  
Let us assume that every nonempty subset of a set with k elements is finite, i.e., if S has k 

elements and T is a nonempty subset of S then T is a finite set. 
Now let S be a set having k +1 elements (so there exists a bijection f of Nk+1 onto S), and 

let T S . 
If ( 1)f k T  , we can consider T to be a subset of 1 \{ ( 1)}S S f k  . 
We know that If A is a set with mN  elements and C A  is a set with 1 element, then 

A \C is a set with m – 1 elements. 
In view of the above statement we have S1 has k elements. 
Hence, by the induction hypothesis, T is a finite set. 
On the other hand, if ( 1)f k T  , then  1 \{ ( 1)}T T f k  is a subset of Sl. Since Sl has k 

elements, the induction hypothesis implies that Tl is a finite set. But this implies that 

1 { ( 1)}T T f k   is also a finite set. 
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(b) We know that, by contrapositive implication, the implication P Q  is logically 
equivalent to the implication ( ) ( )not Q not P .  
In view of the above statement we have that if T is an infinite set, then S is an infinite set. 
Hence proved. 
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