Paper: C 2.1 (Real Analysis)

<u>Unit I</u>

Finite and Infinite Sets:

- ✓ The empty set ϕ is said to have 0 elements.
- ✓ If $n \in \mathbb{N}$ (set of natural numbers), a set *S* is said to have *n* elements if there exists a bijection from the set $\mathbb{N}_n = \{1, 2, ..., n\}$ onto *S*.
- ✓ A set *S* is said to be **finite** if it is either empty or it has *n* elements for some $n \in \mathbb{N}$.
- \checkmark A set S is said to be **infinite** if it is not finite.

<u>Uniqueness Theorem</u>: If S is a finite set, then the number of elements in S is a unique number in N.

Theorem: The set N of natural numbers is an infinite set.

Proof: Let us assume that N is a finite set.

 $\Rightarrow \exists$ a bijection $f: \mathbb{N}_n \to \mathbb{N}$ for some $n \in \mathbb{N}$ (Here we have used definition of finite set)

 $\Rightarrow g \equiv f^{-1} : \mathbb{N} \to \mathbb{N}_n$ is also a bijection

In particular we consider, $h: \mathbb{N}_{n+1} \to \mathbb{N}_n$ defined as $h(x) = g(x) \quad \forall x \in \mathbb{N}_{n+1}$

Now we wish to prove h is a one-one function.

Let x_1 and x_2 be any elements of N_{n+1} such that

$$h(x_1) = h(x_2)$$

$$\Rightarrow g(x_1) = g(x_2)$$

$$\Rightarrow x_1 = x_2 \quad (\because g \text{ is } 1-1)$$

$$\Rightarrow h \text{ is } 1-1$$

which contradicts the Pigeonhole principle.

Thus our assumption is wrong i.e., the set N of natural numbers is an infinite set.

Hence proved.

Theorem: If *A* is a set with *m* elements and *B* is a set with *n* elements and if $A \cap B = \phi$, then $A \cup B$ has m+n elements.

Proof:

Given that,

A is a set with m elements

 $\Rightarrow \exists a \text{ bijection } f: \mathbb{N}_m \to A \qquad \dots (i)$

(Here we have used definition of finite set)

And

B is a set with *n* elements

$$\Rightarrow \exists a \text{ bijection } g: \mathbb{N}_n \rightarrow B$$
 ...(ii)

To show there exists a bijection $h: \mathbb{N}_{m+n} \to A \cup B$.

We define *h* as

$$h(i) = \begin{cases} f(i), & i = 1, 2, \dots, m \\ g(i-m), & i = m+1, m+2, \dots, m+n \end{cases}$$

<u>Claim</u>: h is 1 - 1

For $i \neq j$ we wish to show $h(i) \neq h(j)$.

<u>Case 1</u>: If $i, j \le m$ then h(i) = f(i), h(j) = f(j).

Since
$$f$$
 is $1 - 1 \Rightarrow f(i) \neq f(j) \Rightarrow h(i) \neq h(j)$... (iii)

Case 2: If
$$i, j > m$$
 then $h(i) = g(i-m), h(j) = g(j-m)$.

Since g is
$$1 - 1 \Rightarrow g(i - m) \neq g(j - m) \Rightarrow h(i) \neq h(j)$$
 ... (iv)

<u>Case 3</u>: If $i \le m$, j > m then h(i) = f(i), h(j) = g(j-m).

Since $f(i) \in A$, $g(j-m) \in B$ and $A \cap B = \phi$

$$\Rightarrow f(i) \neq g(j-m) \Rightarrow h(i) \neq h(j) \qquad \dots (v)$$

Combining (iii), (iv), (v) we get h is 1 - 1 or injection.

Claim: h is onto

Let $x \in A \cup B \Longrightarrow x \in A$ or $x \in B$.

If $x \in A \Longrightarrow x = f(k)$ for some $k \in N_m$

$$\Rightarrow x = h(k)$$

If $x \in B \Longrightarrow x = g(k)$ for some $k \in N_n$

$$\Rightarrow x = h(m+k)$$

Thus h is onto or surjection.

Since *h* is 1 - 1 and onto \Rightarrow *h* is a bijection.

Hence $A \cup B$ has m+n elements.

Proved.

Theorem: If *A* is a set with $m \in \mathbb{N}$ elements and $C \subseteq A$ is a set with 1 element, then A \C is a set with m - 1 elements.

Proof: Home Work

Theorem: If C is an infinite set and B is a finite set, then C B is an infinite set.

Proof: Home Work

<u>Theorem</u>: Suppose that *S* and *T* are sets and $T \subseteq S$.

(a) If *S* is a finite set, then *T* is a finite set.

(b) If *T* is an infinite set, then *S* is an infinite set.

Proof:

(a) Given that S is a finite set.

Suppose, $T = \phi$.

We know that empty set is finite.

 \Rightarrow *T* is a finite set.

Suppose that $T \neq \phi$.

We have to prove this theorem using principle of mathematical induction.

Let S has 1 element, then the only nonempty subset T of S must coincide with S, so T is a finite set.

Let us assume that every nonempty subset of a set with k elements is finite, i.e., if S has k elements and T is a nonempty subset of S then T is a finite set.

Now let S be a set having k + 1 elements (so there exists a bijection f of N_{k+1} onto S), and let $T \subseteq S$.

If $f(k+1) \notin T$, we can consider T to be a subset of $S_1 = S \setminus \{f(k+1)\}$.

We know that If A is a set with $m \in \mathbb{N}$ elements and $C \subseteq A$ is a set with 1 element, then $A \setminus C$ is a set with m - 1 elements.

In view of the above statement we have S_1 has k elements.

Hence, by the induction hypothesis, T is a finite set.

On the other hand, if $f(k+1) \in T$, then $T_1 = T \setminus \{f(k+1)\}$ is a subset of S_1 . Since S_1 has k elements, the induction hypothesis implies that T_1 is a finite set. But this implies that $T = T_1 \cup \{f(k+1)\}$ is also a finite set.

(b) We know that, by contrapositive implication, the implication P⇒Q is logically equivalent to the implication (not Q) ⇒ (not P). In view of the above statement we have that if T is an infinite set, then S is an infinite set. Hence proved.

References:

- (i) Bartle, R.G. and Sherbert, D. R.(2002). *Introduction to Real Analysis*, 3rd Ed., John Wiley and Sons (Asia) Pvt. Ltd., Singapore.
- (ii) Malik, S. C. and Arora, S. (2008). *Mathematical Analysis*, 3rd revised edition, New age International (P) Ltd. New Delhi.